

Key Stage 4 Long Term Planning

Year 10

Faculty Area: Chemistry Single Science

Year 10	Year 10 Autumn 1 Autumn 2		Spring 1	Spring 2	Summer 1	Summer 2
Syllabus	AQA Chemistry		AQA Chemistry	AQA Chemistry	AQA Chemistry	AQA Chemistry
	Collins - Chapter 4		Collins - Chapter 3	Collins - Chapter 5	Collins - Chapter 6	Collins - Chapter 7
	Chemical Changes		Chemical Quantities and	Energy Changes	The rate and extent of	Hydrocarbons
			calculations		Chemical Reactions	
Connections to	Chemical symbols and formulae for		Chemical symbols and formulae for	Energy changes on changes	chemical symbols and	the order of metals and carbon
previous KS3	elements and compound	ds	elements and compounds	of state (qualitative)	formulae for elements and	in the reactivity series
learning	The concept of a pure substance		Conservation of mass	Exothermic and endothermic	compounds	the use of carbon in obtaining
	Mixtures, including dissolving		Pure and impure substances	chemical reactions	conservation of mass	metals from metal oxides
	Simple techniques for separating		The concept of a pure substance	(qualitative)	changes of state and	properties of ceramics,
	mixtures: filtration, evaporation,		The identification of pure		chemical reactions.	polymers and composites
	distillation and chromatography		substances.		Chemical reactions	(qualitative).
	Combustion, thermal decomposition,		Chemical reactions as the		chemical reactions as the	
	oxidation and displacement reactions		rearrangement of atoms		rearrangement of atoms	
	Defining acids and alkalis in terms of		Representing chemical reactions		representing chemical	
	neutralisation reactions.		using formulae and using equations		reactions using formulae	
	The pH scale for measuring		Investigate changes in mass for		and using equations	
	acidity/alkalinity; and indicators		chemical and physical processes		what catalysts do.	
	Reactions of acids with r	metals to			the order of metals and	
	produce a salt plus hydro	ogen			carbon in the reactivity	
	The order of metals and	carbon in the			series	
	reactivity series					
	The use of carbon in obtaining metals					
	from metal oxides					
Knowledge	Reactivity of metals		The law of conservation of mass	Exothermic and endothermic	Rate of reaction	Carbon compounds as fuels
	Extraction of metals		relative atomic mass	reactions		Fractional Distillation

	Oxidation and reduction reactions	relative formula mass	Reaction profiles	Factors which affect the	Combustion
	Reactivity of acids	Change in mass	Fuel cells	rates of chemical reactions	Cracking and Alkenes
	Neutralization reactions	Chemical equations can be	Cells and batteries	Reversible reaction systems	Reactions of Alkenes
	Electrolysis	interpreted in terms of moles		at equilibrium	Alcohols
	Predicting the products, using common	Limiting reactants		Catalysts	Polymerisation
	reactants	Atom Economy			
		Volumes of Gases			
Skills	Safe use of appropriate heating devices	Plan investigations, make	use of appropriate apparatus	use appropriate apparatus	Plan investigations, make
	and techniques including the use of a	observations and analyse data	to make and record a range	to explore chemical	observations and analyse data
	Bunsen burner and water bath or	Explain what has happened to the	of measurements	changes	Plot boiling points of alkanes
	electric heater	mass during the experiment and	accurately, including mass,	Plan investigations, make	against number of carbons.
	safe use of a range of equipment to	why it has happened.	temperature and volume of	observations and analyse	Make predictions of the
	purify and/or separate a chemical		liquids	data	boiling points of other alkanes.
	mixture including evaporation, filtration		making and recording	Record the results and plot	Research uses of the fractions
	and crystallisation		appropriate observations	a graph of results of volume	of crude oil.
	safe use and careful handling of gases,		during chemical reactions	of gas against time.	
	liquids and solids, including careful		including changes in	Predict and explain	
	mixing of reagents under controlled		temperature	the effects of changes in	
	conditions, using appropriate apparatus		safe and careful handling of	the size of pieces of a	
	to explore chemical changes and/or		gases, liquids and solids,	reacting solid in terms of	
	products		including careful mixing of	surface area to volume	
	use of appropriate apparatus and		reagents under controlled	ratio.	
	techniques for conducting and		conditions, using appropriate	investigate how changes in	
	monitoring		apparatus to explore	concentration affect the	
	chemical reactions including		chemical changes and/or	rates of reactions by a	
	appropriate reagents and/or techniques		products	method involving	
	for the		Draw simple reaction profiles	measuring the volume of a	
	measurement of pH in different		(energy level diagrams) for	gas produced and a method	
	situations				

	investigate the reactivity of some of the		exothermic and endothermic	involving a change in colour	
	metals with water and acid.		reactions	or turbidity.	
	preparation of a pure, dry sample of a				
	soluble salt from an insoluble oxide or				
	carbonate				
	determination of the reacting volumes				
	of solutions of a strong acid and a				
	strong alkali by titration.				
Assessment	End of unit test for Chapter 4 - Chemical	End of unit test for Chapter 3 -	End of unit test for Chapter 5	End of unit test for Chapter	End of unit test for Chapter 7 -
	Changes	Chemical Quantities and	- Energy Changes	6 - The rate and extent of	Hydrocarbons
		calculations		Chemical Reactions	
Homework	GCSE past paper exam questions	GCSE past paper exam questions	GCSE past paper exam	GCSE past paper exam	GCSE past paper exam
	Analysis / Evaluation of investigations	Analysis / Evaluation of	questions	questions	questions
	Extended answer questions	investigations	Analysis / Evaluation of	Analysis / Evaluation of	Analysis / Evaluation of
		Extended answer questions	investigations	investigations	investigations
			Extended answer questions	Extended answer questions	Extended answer questions
Cultural		<u>School</u>	and University Network		
enrichment		Summer Term-U0	CLAN Visit (topic to be confirmed))	
including Trips,					
Visits,					
Experiences,					
Extra-curricular					
Literacy	Keywords:	Keywords:	Keywords:	Keywords:	Keywords:
	Acid, Alkali, Crystallisation, Displacemen	*Actual yield, *Atom economy,	Activation energy, *Alkaline	Activation energy, Catalyst,	*Addition polymerisation,
	t, Electrolysis, Electrolyte, Extraction, Fil	Avogadro constant, *Avogadro's	batteries, *Battery, *Chemica	Collision theory,	Alcohols, Alkanes, Alkenes,
	tration, Negative electrode	law, Concentration, Conservation	l cells, Endothermic	Equilibrium, Pressure,	unsaturated, *Amino acids,
	(cathode), Neutralisation, Oxidation, pH	of mass, Limiting reactant, *Mole,	reaction, Exothermic	temperature,	Carboxylic acids, Catalytic
	scale, Positive electrode	*Percentage by mass, *Percentage	reaction, *Fuel cells, Reaction	concentration, collisions,	cracking, Combustion,
	(anode), *Redox	yield, Relative formula mass,	profile, *Rechargeable cells	kinetic energy, activation	Complete combustion, Crude
	reaction, Reduction, *Titration, Univers	*Theoretical yield, Thermal		energy, Equilibrium, Le	oil, *Condensation
	al indicator,	decomposition, Uncertainty		Chatelier's Principle, Rate	polymerisation, Cracking,

				of reaction, Reversible	*DNA, Esters, Fermentation,
				reaction	Fractional distillation,
					Hydrocarbons, *Nucleotides,
					*Polyesters, Polymers,
					Polypeptide, Steam cracking
Numeracy	Using common reactants, predict the	Balancing chemical equations	Measurements of	Use the results and graph	Write balanced symbol
	products	The value of the Avogadro constant	temperature change	to determine the mean rate	equations
	Deduce an order of reactivity of metals	is 6.02 x 1023 per mole.	Draw simple reaction profiles	of reaction.	
	Interpret or evaluate specific metal	Define one mole in terms of Mr and	(energy level diagrams) for	Calculate the mean rate of	
	extraction processes when given	Ar	exothermic and endothermic	a reaction from given	
	appropriate information.	Calculate the number of moles in a	reactions	information about the	
	Explain reactions in terms of gain or loss	substance using the relative	Be able to calculate the	quantity of a reactant used	
	of electrons	formula mass.	energy transferred in	or the quantity of a product	
	Explain what happens at the following	Be able to convert cm ₃ into dm ₃ .	chemical reactions using	formed and the time taken.	
	electrodes using suitable examples and	Use the equation:	bond energies supplied	Draw and interpret graphs	
	half equations:	C = m / v to calculate the		showing the quantity of	
	cathode	concentration of a solution.		product formed or quantity	
	anode.	Rearrange the equation:		of reactant used up against	
		C = m / v		time.	
		to make mass the subject.		Draw tangents to the	
				curves on these graphs and	
				use the slope of the	
				tangent as a measure of the	
				rate of reaction.	
				Use simple ideas about	
				proportionality when using	
				collision theory to explain	
				the effect of a factor on the	
				rate of a reaction.	
CIAG	What workplace skills does chemistry dev	elop?			

Collating: Bringing together information from different sources is a useful skill in many jobs. An investigative journalist will need to find evidence from a range of sources to build a story. Software testers need to collate information about the performance of a programme to find issues and suggest appropriate improvements. Investigation: There are many jobs where you have to use these investigative skills. A forensic computer analyst investigates cyber crime to find out how breaches happen. A vet must investigate the causes of illness in an animal by looking at the symptoms and then deciding on a treatment. Critical evaluation: Critical evaluation is a skill that transfers to many jobs. If you work as a crown prosecutor, you'll have to evaluate criminal cases and decide whether the evidence is likely to lead to a conviction. In business, managers need to carry out regular performance evaluations with the members of their team and identify areas for improvement.

Key Stage 4 Long Term Planning Year 11

Curriculum Area: Chemistry Single Science

Year 10	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Syllabus	AQA Chemistry	AQA Chemistry	AQA Chemistry	AQA Chemistry		
	Collins - Chapter 8	Collins - Chapter 9	Collins - Chapter 10	Collins - Chapter 3		
	Chemical Analysis	The Atmosphere	Sustainable Development	Chemical Quantities and		
				calculations		
Connections to	the concept of a pure	The composition of the Earth	The composition of the	Chemical symbols and formulae		
previous KS3	substance	The structure of the Earth	Earth	for elements and compounds		
learning	mixtures, including	The rock cycle and the	The structure of the Earth	Conservation of mass		
	dissolving	formation of igneous,	The carbon cycle	Pure and impure substances		
	simple techniques for	sedimentary and metamorphic	The composition of the	The concept of a pure		
	separating mixtures:	rocks	atmosphere	substance		
	filtration, evaporation,	The carbon cycle	The production of carbon	The identification of pure		
	distillation and	The composition of the	dioxide by human activity	substances.		
	chromatography	atmosphere	and the impact on climate	Chemical reactions as the		
	the identification of pure	The production of carbon		rearrangement of atoms		
	substances	dioxide by human activity and		Representing chemical		
		the impact on climate		reactions using formulae and		
				using equations		
				Investigate changes in mass for		
				chemical and physical		
				processes		
Knowledge	Purity, formulations and	The composition and evolution	Using the Earth's resources	The law of conservation of		
	chromatography	of the Earth's atmosphere	and obtaining potable	mass		
	Identification of common	Carbon dioxide and methane as	water	relative atomic mass		
	gases	greenhouse gases		relative formula mass		

	Flame emission	Common atmospheric	Life cycle assessment and	Change in mass	
	spectroscopy	pollutants and their sources	recycling	Chemical equations can be	
		Carbon footprint and its	Using materials	interpreted in terms of moles	
		reduction	Sustainable development,	Limiting reactants	
			lifecycle assessments and	Atom Economy	
			recycling	Volumes of Gases	
			Corrosion and its		
			prevention		
			Alloys, ceramics, polymers		
			and composites		
			Haber process		
Skills	Plan investigations, make	observations and analysis of	Plan investigations, make	Plan investigations, make	
	observations and analyse	data	observations and analyse	observations and analyse data	
	data		data	Explain what has happened to	
	Evaluate the reliability of		Analysis and purification of	the mass during the	
	data		water samples from	experiment and why it has	
	investigate how paper		different sources, including	happened.	
	chromatography can be		pH, dissolved solids and		
	used to separate and tell the		distillation.		
	difference between coloured		use of appropriate		
	substances. Students should		apparatus to make and		
	calculate Rf values.		record a range of		
	use of chemical tests to		measurements		
	identify the ions		accurately including mass		
			safe use of appropriate		
			heating devices and		
			techniques		
Assessment	End of unit test for Chapter	End of unit test for Chapter 9	End of unit test for Chapter	End of unit test for Chapter 3 -	
	8 - Chemical Analysis	The Atmosphere	10	Chemical Quantities and	
			Sustainable Development	calculations	

Homework	GCSE past paper exam	GCSE past paper exam	GCSE past paper exam	GCSE past paper exam	
	questions	questions	questions	questions	
	Analysis / Evaluation of	Analysis / Evaluation of	Analysis / Evaluation of	Analysis / Evaluation of	
	investigations	investigations	investigations	investigations	
	Extended answer questions	Extended answer questions	Extended answer questions	Extended answer questions	
Cultural			School and University Netw	vork	
enrichment		Post East	er-Lancaster University 6 week	revision course.	
including Trips,					
Visits,					
Experiences,					
Extra-curricular					
Literacy					
	Keywords:	Keywords:	Keywords:	Keywords:	
	Chromatogram,	Acid rain, Carbon footprint,	*Alloy, Bioleaching,	*Actual yield, *Atom economy,	
	Chromatography, *Flame	Environmental implication,	*Borosilicate glass,	Avogadro constant,	
	emission spectroscopy,	Fossil fuels, Global climate	*Composite, *Corrosion,	*Avogadro's law,	
	*Flame test, Impure	change, Global dimming,	Desalination, Displacement,	Concentration, Conservation of	
	substance, *Instrumental	Greenhouse effect,	Electrolysis,	mass, Limiting reactant, *Mole,	
	methods, Litmus paper,	Greenhouse gases, Particulates,	*Electroplating, Finite	*Percentage by mass,	
	Mobile phase, Precipitation,	Photosynthesis, Pollutants	resources, *Galvanise,	*Percentage yield, Relative	
	Pure substance, Rf value,		Ground water, Life cycle	formula mass, *Theoretical	
	Stationary phase		assessment (LCA), *NPK	yield, Thermal decomposition,	
			fertilisers, Ore,	Uncertainty	
			Phytomining, Potable		
			water, Raw materials,		
			Renewable resources,		
			*Sacrificial protection,		
			*Soda-lime glass,		
			Sterilisation, Sustainable		
			development, *The Haber		

			process, Thermosetting				
			polymers, Thermosoftening				
			polymers				
Numeracy	Suggest the effects on Earth	Extract and interpret	Balancing chemical	Balancing chemical equations			
	and atmosphere of the	information about resources	equations	The value of the Avogadro			
	carbon footprint	from charts, graphs and tables.		constant is 6.02 x 1023 per			
	Draw pie charts for the	Use orders of magnitude to		mole.			
	composition of the	evaluate the significance of		Define one mole in terms of Mr			
	atmosphere	data.		and Ar			
	Use the equation for			Calculate the number of moles			
	photosynthesis			in a substance using the			
				relative formula mass.			
				Be able to convert cm₃ into			
				dm₃.			
				Use the equation:			
				C = m / v to calculate the			
				concentration of a solution.			
				Rearrange the equation:			
				C = m / v			
				to make mass the subject.			
CIAG	What workplace skills does cho	emistry develop?			<u></u>		
	Collating: Bringing together information from different sources is a useful skill in many jobs. An investigative journalist will need to find evidence from a range of						
	sources to build a story. Software testers need to collate information about the performance of a programme to find issues and suggest appropriate improvements.						
	Investigation: There are many	jobs where you have to use these i	nvestigative skills. A forensic co	omputer analyst investigates cyber	crime to find out how breaches		
	happen. A vet must investigate the causes of illness in an animal by looking at the symptoms and then deciding on a treatment.						

Critical evaluation: Critical evaluation is a skill that transfers to many jobs. If you work as a crown prosecutor, you'll have to evaluate criminal cases and decide whether the evidence is likely to lead to a conviction. In business, managers need to carry out regular performance evaluations with the members of their team and identify areas for improvement.