

Key Stage 4 Long Term Planning Year 10

Curriculum Area: Chemistry Trilogy Science

Year 10	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Syllabus	AQA Chemistry		AQA Chemistry	AQA Chemistry	AQA Chemistry	AQA Chemistry
	Collins - Chapter 4		Collins - Chapter 3	Collins - Chapter 5	Collins - Chapter 6	Collins - Chapter 7
	Chemical Change	es .	Chemical Quantities and	Energy Changes	The rate and extent of	Hydrocarbons
			calculations		Chemical Reactions	
Connections to	Chemical symbol	s and	Chemical symbols and	Energy changes on changes	chemical symbols and formulae	The order of metals and carbon in
prior KS3	formulae for eler	ments and	formulae for elements and	of state (qualitative)	for elements and compounds	the reactivity series
learning	compounds		compounds	Exothermic and endothermic	Conservation of mass changes	The use of carbon in obtaining
	Mixtures, includi	ng	Conservation of mass	chemical reactions	of state and chemical reactions.	metals from metal oxides
	dissolving		Pure and impure	(qualitative)	Chemical reactions as the	Properties of ceramics, polymers and
	Simple technique	es for	substances		rearrangement of atoms	composites (qualitative).
	separating mixtu	res:	The concept of a pure		Representing chemical	
	filtration, evapor	ation,	substance		reactions using formulae and	
	distillation and		The identification of pure		using equations	
	chromatography		substances.		What catalysts do.	
	Combustion, the	rmal	Chemical reactions as the		The order of metals and carbon	
	decomposition, c	oxidation	rearrangement of atoms		in the reactivity series	
	and displacemen	t reactions	Representing chemical			
	Defining acids an	d alkalis in	reactions using formulae			
	terms of neutrali	sation	and using equations			
	reactions.		Investigate changes in mass			
	The pH scale for	measuring	for chemical and physical			
	acidity/alkalinity;	; and	processes			
	indicators					

				T	
	Reactions of acids with				
	metals to produce a salt plus				
	hydrogen				
	The order of metals and				
	carbon in the reactivity				
	series				
	The use of carbon in				
	obtaining metals from metal				
	oxides				
Knowledge	Reactivity of metals	The law of conservation of	Exothermic and endothermic	Rate of reaction	Carbon compounds as fuels
	Extraction of metals	mass	reactions	Factors which affect the rates	Fractional Distillation
	Oxidation and reduction	relative atomic mass	Reaction profiles	of chemical reactions	Combustion
	reactions	relative formula mass		Reversible reaction systems at	Cracking and Alkenes
	Reactivity of acids	Change in mass		equilibrium	
	Neutralization reactions	Use of amount of substance		Catalysts	
	Electrolysis	in relation to masses of			
	Predicting the products,	pure substances			
	using common reactants	Chemical equations can be			
		interpreted in terms of			
		moles			
		Limiting reactants			
Skills	safe use of a range of	Plan investigations, make	making and recording	use appropriate apparatus to	Plan investigations, make
	equipment to purify and/or	observations and analyse	appropriate observations	explore chemical	observations and analyse data
	separate a chemical mixture	data	during chemical reactions	changes	Plot boiling points of alkanes against
	including evaporation,	Explain what has happened	including changes in	Plan investigations, make	number of carbons.
	filtration and crystallisation	to the mass during the	temperature	observations and analyse data	Make predictions of the boiling
	safe use and careful	experiment and why it has	safe and careful handling of	Record the results and plot a	points of other alkanes.
	handling of gases, liquids	happened.	gases, liquids and solids,	graph of results of volume of	Research uses of the fractions of
	and solids, including careful		including careful mixing of	gas against time.	crude oil.
	mixing of reagents under		reagents under controlled	Predict and explain	
		1	1	ı	

	controlled conditions, using		conditions, using appropriate	the effects of changes in the	
	appropriate apparatus to		apparatus to explore	size of pieces of a reacting solid	
	explore chemical changes		chemical changes and/or	in terms of surface area to	
	and/or products		products	volume ratio.	
	use of appropriate		Investigate the variables that	investigate how changes in	
	apparatus and techniques		affect temperature changes	concentration affect the rates	
	for conducting and		in reacting solutions	of reactions by a method	
	monitoring		displacement of metals.	involving measuring the volume	
	chemical reactions including		Draw simple reaction profiles	of a gas produced and a	
	appropriate reagents and/or		(energy level diagrams) for	method involving a change in	
	techniques for the		exothermic and endothermic	colour or turbidity.	
	measurement of pH in		reactions		
	different situations				
	preparation of a pure, dry				
	sample of a soluble salt from				
	an insoluble oxide or				
	carbonate using a Bunsen				
	burner to heat dilute acid				
	and a water bath or electric				
	heater to evaporate the				
	solution				
Assessment	End of unit test for Chapter	End of unit test for Chapter	End of unit test for Chapter 5	End of unit test for Chapter 6 -	End of unit test for Chapter 7 -
	4 - Chemical Changes	3 - Chemical Quantities and	- Energy Changes	The rate and extent of	Hydrocarbons
		calculations		Chemical Reactions	
Homework	GCSE past paper exam	GCSE past paper exam	GCSE past paper exam	GCSE past paper exam	GCSE past paper exam questions
	questions	questions	questions	questions	Analysis / Evaluation of
	Analysis / Evaluation of	Analysis / Evaluation of	Analysis / Evaluation of	Analysis / Evaluation of	investigations
	investigations	investigations	investigations	investigations	Extended answer questions
	Extended answer questions	Extended answer questions	Extended answer questions	Extended answer questions	

Cultural	School and University Network							
enrichment		Su	mmer Term-UCLAN Visit (Topic to	be confirmed)				
including Trips,								
Visits,								
Experiences,								
Extra-curricular								
Literacy	Keywords:	Keywords:	Keywords:	Keywords:	Keywords:			
	Acid, Alkali, Crystallisation,	*Actual yield,		Activation energy, Catalyst,	Alcohols, Alkanes, Alkenes,			
	Displacement, Electrolysis,	Concentration,	Activation energy, Battery,	Collision theory, Equilibrium,	unsaturated, Carboxylic acids,			
	Electrolyte, Extraction,	Conservation of mass,	Endothermic reaction,	Pressure, temperature,	Catalytic cracking, Combustion,			
	Filtration, Negative	Limiting reactant, *Mole,	Exothermic reaction,	concentration, collisions,	Complete combustion, Crude oil,			
	electrode (cathode),	*Percentage by mass,	Reaction profile,	kinetic energy, activation	Cracking, DNA, Esters, Fermentation,			
	Neutralisation, Oxidation,	*Percentage yield, Relative		energy, Equilibrium, Le	Fractional distillation, Hydrocarbons,			
	pH scale, Positive electrode	formula mass, *Theoretical		Chatelier's Principle, Rate of	Polymers, Polypeptide, Steam			
	(anode), Reduction,	yield, Thermal		reaction, Reversible reaction	cracking			
	Universal indicator,	decomposition, Uncertainty						
Numeracy	Using common reactants,	Balancing chemical	Measurements of	Use the results and graph to	Write balanced symbol equations			
	predict the products	equations	temperature change	determine the mean rate of				
	Deduce an order of	Define one mole in terms of	Draw simple reaction profiles	reaction.				
	reactivity of metals	Mr and Ar	(energy level diagrams) for	Calculate the mean rate of a				
	Interpret or evaluate specific	Be able to convert cm₃ into	exothermic and endothermic	reaction from given				
	metal extraction processes	dm₃.	reactions	information about the quantity				
	when given appropriate	Rearrange the equation:	Be able to calculate the	of a reactant used or the				
	information.	C = m / v	energy transferred in	quantity of a product formed				
	Explain reactions in terms of	to make mass the subject.	chemical reactions	and the time taken.				
	gain or loss of electrons			Draw and interpret graphs				
	Explain what happens at the			showing the quantity of				
	following electrodes using			product formed or quantity of				
	suitable examples and half			reactant used up against time.				
	equations:							

	cathode		Use simple ideas about				
	anode.		proportionality when using				
			collision theory to explain the				
			effect of a factor on the rate of				
			a reaction.				
CIAG	What workplace skills does chemistry develop?						
	Collating: Bringing together information from different sources is a useful skill in many jobs. An investigative journalist will need to find evidence from a range of						
	sources to build a story. Software testers need to collate information about the performance of a programme to find issues and suggest appropriate improvements.						
	Investigation: There are many jobs where you have to use these investigative skills. A forensic computer analyst investigates cyber crime to find out how breaches						
	happen. A vet must investigate the causes of illness in an animal by looking at the symptoms and then deciding on a treatment.						
	Critical evaluation: Critical evaluation is a skill that transfers to many jobs. If you work as a crown prosecutor, you'll have to evaluate criminal cases and decide whether						
	the evidence is likely to lead to a conviction. In busines	s, managers need to carry out regular p	performance evaluations with the m	embers of their team and identify			
	areas for improvement.						

Key Stage 4 Long Term Planning Year 11

Curriculum Area: Chemistry Trilogy Science

Year 11	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1
Syllabus	AQA Chemistry	AQA Chemistry	AQA Chemistry	AQA Chemistry	
	Collins - Chapter 8	Collins - Chapter 9	Collins - Chapter 10	Collins - Chapter 3	
	Chemical Analysis	The Atmosphere	Sustainable Development	Chemical Quantities and	
				calculations	
Connections to prior	the concept of a pure substance	The composition of the Earth	The composition of the Earth	Chemical symbols and	
KS3 learning	mixtures, including dissolving	The structure of the Earth	The structure of the Earth	formulae for elements and	
	simple techniques for separating	The rock cycle and the formation	The carbon cycle	compounds	
	mixtures: filtration, evaporation,	of igneous, sedimentary and	The composition of the	Conservation of mass	
	distillation and	metamorphic rocks	atmosphere	Pure and impure substances	
	chromatography	The carbon cycle	The production of carbon	The concept of a pure	
	the identification of pure	The composition of the	dioxide by human activity and	substance	
	substances	atmosphere	the impact on climate	The identification of pure	
		The production of carbon dioxide		substances.	
		by human activity and the impact		Chemical reactions as the	
		on climate		rearrangement of atoms	
				Representing chemical	
				reactions using formulae and	
				using equations	
				Investigate changes in mass	
				for chemical and physical	
				processes	
Knowledge	Purity, formulations and	The composition and evolution	Using the Earth's resources and	The law of conservation of	
	chromatography	of the Earth's atmosphere	obtaining potable water	mass	
	Identification of common gases			relative atomic mass	

		Carbon dioxide and methane as	Life cycle assessment and	relative formula mass
		greenhouse gases	recycling	Change in mass
		Common atmospheric pollutants	Sustainable development	Use of amount of substance
		and their sources		in relation to masses of pure
		Carbon footprint and its		substances
		reduction		Chemical equations can be
				interpreted in terms of moles
				Limiting reactants
Skills	Plan investigations, make	observations and analysis of data	Plan investigations, make	Plan investigations, make
	observations and analyse data		observations and analyse data	observations and analyse
	Evaluate the reliability of data		Analysis and purification of	data
	investigate how paper		water samples from different	Explain what has happened
	chromatography can be used to		sources, including pH, dissolved	to the mass during the
	separate and tell the difference		solids and distillation.	experiment and why it has
	between coloured substances.		use of appropriate apparatus	happened.
	Students should calculate Rf		to make and record a range of	
	values.		measurements	
	use of chemical tests to identify		accurately including mass	
	the ions		safe use of appropriate heating	
			devices and techniques	
			including use of a Bunsen	
			burner and a water bath or	
			electric heater	
			use of appropriate apparatus	
			and techniques for the	
			measurement of pH in different	
			situations	
Assessment	End of unit test for Chapter 8	End of unit test for Chapter 9	End of unit test for Chapter 10	End of unit test for Chapter 3
	Chemical Analysis	The Atmosphere	Sustainable Development -	- Chemical Quantities and
				calculations

Homework	GCSE past paper exam questions	GCSE past paper exam questions	GCSE past paper exam	GCSE past paper exam
	Analysis / Evaluation of	Analysis / Evaluation of	questions	questions
	investigations	investigations	Analysis / Evaluation of	Analysis / Evaluation of
	Extended answer questions	Extended answer questions	investigations	investigations
			Extended answer questions	Extended answer questions
Cultural enrichment		<u>s</u>	chool and University Network	
including Trips, Visits,		Post Easter-La	ancaster University 6 week revision	course.
Experiences, Extra-				
curricular				
Literacy				
	Keywords:	Keywords:	Keywords:	Keywords:
	Chromatogram,	Acid rain, Carbon footprint,	*Alloy, Bioleaching,	*Actual yield, *Atom
	Chromatography, *Flame	Environmental implication, Fossil	*Borosilicate glass,	economy, Avogadro constant,
	emission spectroscopy, *Flame	fuels, Global climate change,	*Composite, *Corrosion,	*Avogadro's law,
	test, Impure substance,	Global dimming, Greenhouse	Desalination, Displacement,	Concentration, Conservation
	*Instrumental methods, Litmus	effect, Greenhouse gases,	Electrolysis, *Electroplating,	of mass, Limiting reactant,
	paper, Mobile phase,	Particulates, Photosynthesis,	Finite resources, *Galvanise,	*Mole, *Percentage by mass,
	Precipitation, Pure substance, Rf	Pollutants	Ground water, Life cycle	*Percentage yield, Relative
	value, Stationary phase		assessment (LCA), *NPK	formula mass, *Theoretical
			fertilisers, Ore, Phytomining,	yield, Thermal
			Potable water, Raw materials,	decomposition, Uncertainty
			Renewable resources,	
			*Sacrificial protection, *Soda-	
			lime glass, Sterilisation,	
			Sustainable development, *The	
			Haber process, Thermosetting	
			polymers, Thermosoftening	
			polymers	

Numeracy	Suggest the effects on Earth and	Extract and interpret information	Balancing chemical equations	Balancing chemical equations				
	atmosphere of the carbon	about resources from charts,		Define one mole in terms of				
	footprint	graphs and tables.		Mr and Ar				
	Draw pie charts for the	Use orders of magnitude to		Be able to convert cm ₃ into				
	composition of the atmosphere	evaluate the significance of data.		dm ₃ .				
	Use the equation for			Rearrange the equation:				
	photosynthesis			C = m / v				
				to make mass the subject.				
CIAG	What workplace skills does chemist	try develop?						
	Collating: Bringing together information from different sources is a useful skill in many jobs. An investigative journalist will need to find evidence from a range of sources to							
	build a story. Software testers need to collate information about the performance of a programme to find issues and suggest appropriate improvements.							
	Investigation: There are many jobs where you have to use these investigative skills. A forensic computer analyst investigates cyber crime to find out how breaches happen.							
	A vet must investigate the causes of illness in an animal by looking at the symptoms and then deciding on a treatment.							
	Critical evaluation: Critical evaluation is a skill that transfers to many jobs. If you work as a crown prosecutor, you'll have to evaluate criminal cases and decide whether the							
	evidence is likely to lead to a conviction. In business, managers need to carry out regular performance evaluations with the members of their team and identify areas for							
	improvement.							