

Key Stage 4 Long Term Planning Year 10

Curriculum Area: Physics Single Science

Year 10	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2	
Syllabus	AQA Physics		AQA Physics		AQA Physics		
	Collins - Chapter 2		Collins - Chapter 5		Collins - Chapter 6		
	Electricity		Forces		Waves		
Connections to	Electric current, measured in a	mperes, in circuits, series	Forces as pushes or pulls,	arising from the	Frequencies of sound waves, measured in hertz (Hz);		
prior KS3	and parallel circuits, currents a	dd where branches meet	interaction between two	interaction between two objects		echoes, reflection and absorption of sound	
learning	and current as flow of charge		Using force arrows in diag	grams, adding forces in	Sound needs a medium to t	travel, the speed of sound	
	Potential difference, measured	in volts, battery and bulb	one dimension, balanced	and unbalanced forces	in air, in water, in solids		
	ratings; resistance, measured i	n ohms, as the ratio of	moment as the turning ef	fect of a force	Sound produced by vibration	ons of objects, in loud	
	potential difference (p.d.) to co	urrent	Forces measured in newto	ons, measurements of	speakers, detected by their	effects on microphone	
	Differences in resistance between	een conducting and	stretch or compression as	force is changed	diaphragm and the ear drur	diaphragm and the ear drum; sound waves are	
	insulating components (quanti	tative).	work done and energy ch	work done and energy changes on deformation			
			non-contact forces: gravity forces acting at a		Auditory range of humans and animals the		
			distance on Earth and in space, forces		similarities and differences	similarities and differences between light waves and	
			between magnets and forces due to static		waves in matter		
			electricity.		Light waves travelling throu	ugh a vacuum; speed of	
			Pressure in liquids, increasing with depth; Upthrust		light		
			effects, floating and sinkir	ng	The transmission of light th	rough materials	
			Opposing forces and equi	librium			
			Forces being needed to ca	ause objects to stop or			
			start moving, or to change their speed				
			or direction of motion (qualitative only) Change depending on direction of force and its				
			size.				
Knowledge	Static electricity, Current, pote	ntial difference and	Contact and non-contact	forces	Transverse and longitudinal	l waves, Properties of	
	resistance, Standard circuit dia	gram symbols, Electrical			waves, Electromagnetic Wa	aves, Reflection, refraction	

	charge and current, Current, resistance and potential	Gravity, Resultant Forces, Work done and Energy	and wavelengths, Waves for detection and
	difference, Resistors, Series and parallel circuits,	Transfer, Forces and Elasticity, Forces and Motion,	exploration, Lenses, Black body Radiation, Colour,
	Domestic uses and safety, Direct and alternating	Acceleration, Newton's Laws, Forces and Braking,	temperature of the earth, seismic waves, sound
	potential difference, Mains electricity, Energy transfers,	Momentum Moments Levers and Gears, Pressure	waves.
	Power, Energy transfers in everyday appliances, The	and Pressure differences in Fluids,	
	National Grid, Static charge, Electric fields		
Skills	Plan experiments or devise procedures to make	Use scientific theories and explanations to develop	Use scientific theories and explanations to develop
	observations, produce or characterise a substance, test	hypotheses.	hypotheses.
	hypotheses, check data or explore phenomena.	Plan experiments or devise procedures to make	Plan experiments or devise procedures to make
	Apply a knowledge of a range of techniques, instruments,	observations, produce or characterise a substance,	observations, produce or characterise a substance,
	apparatus, and materials to select those appropriate to	test hypotheses, check data or explore	test hypotheses, check data or explore phenomena.
	the experiment.	phenomena.	Apply a knowledge of a range of techniques,
	Carry out experiments appropriately having due regard	Apply a knowledge of a range of techniques,	instruments, apparatus, and materials to select those
	for the correct manipulation of apparatus, the accuracy	instruments, apparatus, and materials to select	appropriate to the experiment.
	of measurements and health and safety considerations.	those appropriate to the experiment.	Carry out experiments appropriately having due
	Make and record observations and measurements using	Carry out experiments appropriately having due	regard for the correct manipulation of apparatus, the
	a range of apparatus and methods.	regard for the correct manipulation of apparatus,	accuracy of measurements and health and safety
	Evaluate methods and suggest possible improvements	the accuracy of measurements and health and	considerations.
	and further investigations	safety considerations.	Make and record observations and measurements
	Presenting observations and other data using	Make and record observations and measurements	using a range of apparatus and methods.
	appropriate methods.	using a range of apparatus and methods.	Evaluate methods and suggest possible
	use circuit diagrams to construct appropriate circuits to	Evaluate methods and suggest possible	improvements and further investigations
	investigate the I–V characteristics of a variety of circuit	improvements and further investigations	Presenting observations and other data using
	elements, including a filament lamp, a diode and a	Presenting observations and other data using	appropriate methods.
	resistor at constant temperature.	appropriate methods.	investigate the reflection of light by different types of
	Use circuit diagrams to set up and check appropriate	investigate the relationship between force and	surface and the refraction of light by different
	circuits to investigate the factors affecting the resistance	extension for a spring.	substances.
	of electrical circuits.	investigate the effect of varying the force on the	make observations to identify the suitability of
		acceleration of an object of constant mass, and the	apparatus to measure the frequency, wavelength and

		T	
		effect of varying the mass of an object on the	speed of waves in a ripple tank and waves in a solid
		acceleration produced by a constant force.	and take appropriate measurements.
			investigate how the amount of infrared radiation
			absorbed or radiated by a surface depends on the
			nature of that surface.
Assessment	End of unit test for chapter 2 - Electricity	End of unit test for Chapter 5 - Forces	End of unit test for Chapter 6 - Waves
Homework	GCSE past paper exam questions	GCSE past paper exam questions	GCSE past paper exam questions
nome w ork	Analysis / Evaluation of investigations	Analysis / Evaluation of investigations	Analysis / Evaluation of investigations
	Extended answer questions	Extended answer questions	Extended answer questions
	·	·	·
Cultural		School and University Network	
enrichment		Summer Term-UCLAN Visit (Topic to be confirmed)	
including Trips,			
Visits,			
Experiences, Extra- curricular			
Literacy	Keywords:	Keywords:	Keywords:
	Alternating Potential Difference, Amperes (Amps),	Acceleration, *Atmosphere, Braking Distance,	Amplitude, Angle of Incidence, Colour Filters,
	Attraction, Coulomb, Diode, Direct Potential Difference,	Centre of Mass, Changes of Momentum,	*Constant Temperature, Convex Lens, Diffuse,
	Earth Wire, *Electric Field Lines, *Electric Field, Electrical	Conservation of Momentum, Contact Forces,	Reflection, *Echo Sounding, Electromagnetic Waves,
	Current, Electrical Work, Filament Lamp, Insulation, Light	Displacement, Distance, Elastic Deformation,	Focal Length, Frequency, Hertz, *Human Hearing,
	Dependent Resistor (LDR), Live Wire, Mains Electricity,	Elastic Limit, Elastic Potential Energy, Equilibrium,	Infrared Radiation, Ionising Radiation, Lens,
	Neutral Wire, Non-Contact Force, Ohmic Conductor,	*Floating, *Fluid, Forces, Inertia, Inertial Mass,	Longitudinal Waves, Magnification, Microwaves, *P-
	Ohms, Parallel, Potential Difference, Repulsion, Series,	Limit of Proportionality, *Moment, Momentum,	Waves, Period, Radiation Dose, Radio Waves,
	*Static Charge, Step-Down Transformers, Step-Up	Newton's First Law, Newton's Second Law,	*Reflection, *S-Waves, *Sound Waves, Specular
	Transformers, The National Grid, Thermistor, Volt	Newton's Third Law, Non-Contact Forces,	Reflection, waves, *Ultrasound Scanning,
		Deformation, *Pressure in a Column, Resolution of	*Ultrasound Waves, Ultraviolet, Visible Light, Wave
		Forces, resultant Force, *Resultant Moment, Scalar	Speed, Wavelength
			,

		Quantities, *Sinking, Speed, Spring Constant,			
		Stopping Distance, Thinking Distance, Upthrust,			
		Vector Quantities, Velocity, Weight, Work Done,			
Numeracy	Equation for electric current as the rate of flow of charge	Identify the limit of proportionality on a graph	Calculate the wavelength of a wave from a labelled		
	should be known	showing the force applied against extension.	diagram of a wave.		
	Equation linking potential difference, current and	Rearrange the equation to find the two other	Equation linking the wave speed, frequency and		
	resistance should be known.	unknowns.	wavelength should be known.		
	Current-potential difference graphs for electrical	Calculate the speed of an object given the distance	Calculate the speed of a wave.		
	components	travelled and the time taken.	Rearrange the equation to find any unknown given		
	Formula for working out the resistance in a series and	Rearrange the equation to find either unknown	the other two values.		
	parallel circuit	quantity.	Perform calculations on ultrasound scans using the		
	Equations for electrical power should be known	Draw and interpret distance – time graphs.	equation: distance = speed x time		
	Equations for energy transfer should be known	Draw and interpret Velocity – time graphs.	Draw conclusions from given data about the risks and		
		Calculate the acceleration of a vehicle when given	consequences of exposure to radiation.		
		the initial and final speed and the time taken for	Calculate the magnification of a lens using the		
		the change in speed to occur.	magnification equation.		
		Calculate the resultant force acting on an object			
		calculate the force that acts on an object when the			
		momentum of that object changes			
		Find patterns between the speed of a vehicle and			
		the thinking distance			
		Give the correct units of weight and mass.			
		Calculate the pressure at the surface of a fluid			
		when given the applied force and the surface area			
		that the force is applied to.			
CIAG	What workplace skills does physics develop?				
	Critical thinking: The ability to scrutinise information you're	e presented with is important not only for scientists bu	t for lawyers, police, medics, journalists and more.		
	Data analysis: From actuaries and financial advisors to social media specialists and market researchers, data analysis is one of the most sought after skills.				

Problem solving: Complex problem solving is vital for engineers, researchers, marketers, social workers, designers, and even customer service workers.

Attention to detail: From nurses and scientists to accountants and writers, attention to detail is vital to carrying out many roles safely and effectively.

Key Stage 4 Long Term Planning Year 11

Curriculum Area: Physics Single Science

Year 11	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1
Syllabus	AQA Physics	AQA Physics	Revision in preparation for	Revision in preparation for	
	Collins - Chapter 7	Collins - Chapter 8	GCSE exams	GCSE exams	
	Electromagnetism	Space			
Connections to prior	Magnetic poles, attraction and	gravity force, weight = mass x			
ks3 learning	repulsion	gravitational field strength (g),			
	Magnetic fields by plotting with	on Earth g=10 N/kg, different on			
	compass, representation by field	other planets and stars; gravity			
	lines	forces between Earth and Moon,			
	Earth's magnetism, compass and	and between Earth and Sun			
	navigation	(qualitative only)			
		Our Sun as a star, other stars in			
		our galaxy, other galaxies			
		The seasons and the Earth's tilt,			
		day length at different times of			
		year, in different hemispheres			
		The light year as a unit of			
		astronomical distance			
Knowledge	Permanent and induced	Solar system			
	magnetism	stability of orbital motions			
	forces and fields				
	The motor effect	satellites			
	Induced potential	Red-shift			
	Transformers and the National				
	Grid				

Skills	test hypotheses, check data or	test hypotheses, check data or		
	explore phenomena.	explore phenomena.		
	Apply a knowledge of a range of	Evaluate methods and suggest		
	techniques, instruments,	possible improvements and		
	apparatus, and materials to	further investigations		
	select those appropriate to the	Presenting observations and		
	experiment.	other data using appropriate		
	Carry out experiments	methods.		
	appropriately having due regard			
	for the correct manipulation of			
	apparatus, the accuracy of			
	measurements and health and			
	safety considerations.			
	Make and record observations			
	and measurements using a range			
	of apparatus and methods.			
	Evaluate methods and suggest			
	possible improvements and			
	further investigations			
	Presenting observations and			
	other data using appropriate			
	methods.			
Assessment	End of unit test for Chapter 7 -	End of unit test for Chapter 8		
	Electromagnetism	Space		
Homework	GCSE past paper exam questions	GCSE past paper exam questions		
	Analysis / Evaluation of	Analysis / Evaluation of		
	investigations	investigations		
	Extended answer questions	Extended answer questions		

Cultural enrichment	School and University Network				
including Trips, Visits,	Post Easter Revision-Lancaster University 6 week course				
Experiences, Extra-					
curricular					
Literacy	Keywords:	Keywords:			
	Alternator, Attraction, Current-	*Artificial Satellites, Big Bang			
	Carrying Wires, Dynamo, Electric	Theory, *Circular Orbits, *Dark			
	Motor, Electromagnet, Fleming's	Energy, *Dark Mass, *Main			
	Left-Hand Rule, Generator Effect,	Sequence, Star, *Milky Way			
	Induced Magnet, Magnetic	Galaxy, *Natural Satellites,			
	Compass, Magnetic Field Lines,	*Nebula, *Protostar, *Red Giant			
	Magnetic Field, Magnetic	Star, *Red-Shift, *Star Life Cycle,			
	Materials, Magnetic Poles,	*Supernova, *White Dwarf			
	Microphone, Motor Effect,				
	Permanent Magnet, Solenoid,				
	Step-Down Transformer, Step-Up				
	Transformer, Tesla, Transformer				
Numeracy	Recall and use Fleming's left-	Evaluate data, Handling Data,			
	hand rule.				
	Calculate the force on a				
	conductor in a magnetic field.				
	Perform calculations to				
	determine the potential				
	difference on the primary or				
	secondary coil or the number of				
	turns on the primary or				
	secondary coil when given the				
	other values.				

What workplace skills does physics develop?

Critical thinking: The ability to scrutinise information you're presented with is important not only for scientists but for lawyers, police, medics, journalists and more.

Data analysis: From actuaries and financial advisors to social media specialists and market researchers, data analysis is one of the most sought after skills.

Problem solving: Complex problem solving is vital for engineers, researchers, marketers, social workers, designers, and even customer service workers.

Attention to detail: From nurses and scientists to accountants and writers, attention to detail is vital to carrying out many roles safely and effectively.