

Long Term Planning

Year 9

Curriculum Area: Physics

Year 10	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Syllabus	AQA Physics		AQA Physics		AQA Physics	
	Physics 3.1		Physics 3.2		Physics 3.3	
	Acceleration		Heating		Sound and Waves	
Connections to	Forces have size and direction, Forces are represented on		Pupils should have a secure understanding of the		Energy cannot be created or destroyed, only	
prior KS3 learning	free-body force diagram, Balanced, unbalanced forces		arrangement of particles and movement of		transferred between differe	ent energy stores
	and resultant forces		particles in each state and be able to explain these		Energy stores and transfers	
	The difference between Mass and weight		in terms of forces of attraction		When light reaches a different medium, some light	
	Speed = distance / time Describe an object's motion from a graph.		Energy cannot be created or destroyed, only transferred between different energy stores		can be reflected and some is refracted.	
					Light can be represented by ray diagrams.	
	Acceleration describes how qu	iickly a speed is changing	Energy stores and transfers		White light contains all the	colours of the visible
	(speeding up or slowing down).		Energy is measured in joules (J)		spectrum.	
	The gradient of the distance-time graph is the object's		Thermal energy and Temperature		Transparent, Translucent and opaque materials	
	speed.		conductors and insulators	5	Identify how sounds are ma	ide, associating some of
					them with something vibrat	ting
					Energy can be transferred f	rom one store to another
					- Waves are one way of doi	ng this.
					Speed = distance / time	
					KS2 links	
					recognise that vibrations fro	om sounds travel through
					a medium to the ear	
					find patterns between the p	oitch of a sound and
					features of the object that p	produced it
					find patterns between the v	volume of a sound and the
					strength of the vibrations th	nat produced it

Knowledge	Scalars and Vectors	Rearranging Equations	Types of Wave	
into incluge	Resultant Vectors	Internal Energy	Properties of Waves	
	Resolving Vectors	Thermal Transfers	Derived Quantities	
	Newton's Third Law	Thermal Transfers 2	Velocity of Waves Reflection and Refraction	
	Newton's First Law	Specific Heat Capacity		
	Acceleration	Specific Heat Capacity Investigation	Investigating Reflection and Refraction	
	Acceleration Investigation	Specific Latent Heat	Investigating Waves	
	Linear Graphs		Using Waves	
	Velocity-Time Graphs			
	Velocity-Time Graphs 2			
	Acceleration Problems			
Skills	Required Practical Activity 7 (Taking it Further) and 19	Demo: Grapes floating on salty water and oil; not	Use models to explain transverse and longitudinal	
	(Trilogy): Investigate the effect of varying the force on	in water.	waves (e.g. slinky or mexican wave).	
	the acceleration of an object of constant mass and the	Demo: Heating ice in beaker	Waves on a string can be used to model varying	
	effect of varying the mass of an object on the	Metal conduction experiment	amplitude, frequency and wavelength.	
	acceleration produced by a constant force."	Effectiveness of insulators practical	Know the difference between a scientific question	
	Measure time accurately	convection currents demonstration"	and a non-scientific question	
		Required practical activity 1 An investigation to	Define and understand the term hypothesis.	
		determine the specific heat capacity of one or	Draw ray diagrams to represent reflection and	
		more materials.	refraction	
			Required Practical Activity 9 Investigate the reflection	
			of light by different types of surface and the	
			refraction of light by different	
			substances.	
			Making observations of waves in fluids and solids to	
			identify the suitability of apparatus to measure	
			speed, frequency and wavelength.	
			Required Practical Activity 8: make observations to	
			identify the suitability of apparatus to measure the	

			frequency, wavelength and speed of waves in a ripple
			tank and waves in a solid and take appropriate
			measurements.
Assessment	End of unit test	End of unit test	End of unit test
Homework	GCSE past paper exam questions	GCSE past paper exam questions	GCSE past paper exam questions
nomework	Analysis / Evaluation of investigations	Analysis / Evaluation of investigations	Analysis / Evaluation of investigations
	Extended answer questions	Extended answer questions	Extended answer questions
Cultural	School and University Network	School and University Network	School and University Network
enrichment		Y9 – Engineering workshop and Business workshop	
including Trips,		combined with a HE info and insights sessions	
Visits,			
Experiences, Extra-			
curricular	Keywords that students may find difficult:	Keywords that students may find difficult:	Keywords that students may find difficult:
Literacy	Force, contact, non-contact, resultant, friction, scalar,	Density, pressure, work, Internal, kinetic, potential,	energy, store, waves, reflection, refraction,
	vector, speed, velocity, displacement, distance, resultant,		longitudinal, transverse, compression, rarefaction,
		energy, temperature, Conduction, convection,	
	component, action, reaction	radiation, insulation, thermal, Specific, capacity	oscillation, wavelength, amplitude, pitch, frequency,
	balanced, unbalanced, resultant, stationary, constant	specific, latent, internal, kinetic, potential, state,	period, "SI units, base units, derived units, prefix,
	velocity, acceleration, deceleration, velocity, initial	temperature, boiling, melting	velocity, Frequency, wavelength, displacement, time
	velocity, final velocity, force, mass, acceleration, initial		period, "reflection, Refraction, medium, wavelength,
	velocity, final velocity, velocity, acceleration, gradient,		frequency, speed, reflection, Refraction, normal,
	slope, area, curve, gradient, tangent, vertical, gravity,		medium, Perspex, velocity, Frequency, wavelength,
	weight, resultant, acceleration		ripple tank, oscillator, ultrasound, Frequency, vibrate,
			longitudinal, transverse
Numeracy	Recognise the importance of scientific quantities and	Any anomalous values should be examined to try	Relate derived quantities with the formulae to
	understand how they are determined.	to identify the cause and, if a product of a poor	calculate those quantities
	Change the subject of an equation	measurement, ignored.	Draw ray diagrams to represent reflection and
	Measure motion, including determination of speed and	Change the subject of an equation	refraction"
	rate of change of speed (acceleration/deceleration)		

	Any anomalous values should be examined to try to		
	identify the cause and, if a product of a poor		
	measurement, ignored.		
	Understand that y=mx + c represents a linear relationship		
	Determine the slope and intercept of a linear graph		
	Plot two variables from experimental or other data.		
CIAG	What workplace skills does physics develop?		
	Critical thinking: The ability to scrutinise information you're presented with is important not only for scientists but for lawyers, police, medics, journalists and more.		
	Data analysis: From actuaries and financial advisors to social media specialists and market researchers, data analysis is one of the most sought after skills.		
	Problem solving: Complex problem solving is vital for engineers, researchers, marketers, social workers, designers, and even customer service workers.		
	Attention to detail: From nurses and scientists to accountants and writers, attention to detail is vital to carrying out many roles safely and effectively.		