

Long Term Planning Year 9

Curriculum Area: Physics

Year 9	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Syllabus	AQA Physics		AQA Physics		AQA Physics	AQA Physics
	Physics 3.1		Physics 3.2		Physics 3.3	Physics 3.4
	Acceleration		Heating		Sound and Waves	Home Electricity
Connections to	Forces have size and direction, Forces		Arrangement of par	rticles	Energy cannot be created or destroyed,	Functions of the following components:
prior KS3	are represented on fre	ee-body force	movement of partic	les in each state	only transferred between different	cell, battery, bulb/lamp, motor, switch,
learning	diagram, Balanced, unbalanced forces		Energy cannot be cr	eated or destroyed,	energy stores	buzzer, ammeter, voltmeter.
	and resultant forces		only transferred bet	ween different	Energy stores and transfers	Current needs a complete circuit to flow.
	The difference betwee	en Mass and	energy stores		When light reaches a different medium,	Potential difference is also known as
	weight		Energy stores and tr	ransfers	some light can be reflected and some is	voltage. It is measured in Volts (V) by a
	Speed = distance / time		Energy is measured	in joules (J)	refracted.	Voltmeter.
	Describe an object's motion from a		Thermal energy and	l Temperature	Light can be represented by ray diagrams.	Voltmeters are placed in parallel.
	graph.		conductors and insu	ılators	White light contains all the colours of the	Resistance slows current. Resistance is
	Acceleration describes how quickly a				visible spectrum.	measured in ohms.
	speed is changing (speeding up or				Transparent, Translucent and opaque	Current, potential difference or
	slowing down).				materials	resistance can be calculated using the
	The gradient of the distance-time graph				Identify how sounds are made,	equation V=I xR
	is the object's speed.				associating some of them with something	Wave frequency is the number of waves
					vibrating	that pass each second. The unit of
					Energy can be transferred from one store	frequency is hertz (Hz)."
					to another - Waves are one way of doing	Potential difference is a measure of how
					this.	much energy is transferred to each unit
					Speed = distance / time	of charge which makes up the current
					KS2 links	(Coulomb).
					recognise that vibrations from sounds	Current is the rate of flow of charged
					travel through a medium to the ear	particles, usually electrons."

			find patterns between the pitch of a	Atoms are composed of the sub-atomic
			sound and features of the object that	particles: proton, neutron and electron
			produced it	Atoms have a neutral charge
			find patterns between the volume of a	Atoms turn into positive ions if they lose
			sound and the strength of the vibrations	one or more outer electron(s).
			that produced it	
Knowledge	Scalars and Vectors	Rearranging Equations	Types of Wave	Mains Electricity
	Resultant Vectors	Internal Energy	Properties of Waves	Plugs
	Resolving Vectors	Thermal Transfers	Derived Quantities	Power
	Newton's Third Law	Thermal Transfers 2	Velocity of Waves	Cost of Electricity
	Newton's First Law	Specific Heat Capacity	Reflection and Refraction	Power in Circuits
	Acceleration	Specific Heat Capacity Investigation	Investigating Reflection and Refraction	Power and Energy in Appliances
	Acceleration Investigation	Specific Latent Heat	Investigating Waves	Energy Resources
	Linear Graphs		Using Waves	The National Grid
	Velocity-Time Graphs			Static Electricity
	Velocity-Time Graphs 2			
	Acceleration Problems			
Skills	Investigate the effect of varying the	An investigation to determine the	Use models to explain transverse and	Change the subject of an equation
	force on the acceleration of an object of	specific heat capacity of one or more	longitudinal waves (e.g. slinky or mexican	Interconvert units.
	constant mass and the effect of varying	materials.	wave).	Safe use of appropriate apparatus to
	the mass of an object on the		Waves on a string can be used to model	measure energy changes/ transfers and
	acceleration produced by a constant		varying amplitude, frequency and	associated values such as work done
	force.		wavelength.	
	Measure time accurately		Know the difference between a scientific	
	Measure motion, including		question and a non-scientific question	
	determination of speed and rate of		Define and understand the term	
	change of speed		hypothesis.	
	(acceleration/deceleration)		Draw ray diagrams to represent reflection	
			and refraction	
			9: Investigate the reflection of light by	

			different types of surface and the		
			refraction of light by different		
			substances.		
			Making observations of waves in fluids		
			and solids to identify the suitability of		
			apparatus to measure speed, frequency		
			and wavelength.		
			8: make observations to identify the		
			suitability of apparatus to measure the		
			frequency, wavelength and speed of		
			waves in a ripple tank and waves in a		
			solid and take appropriate		
			measurements.		
	End of unit test	End of unit test	End of unit test	End of unit test	
Assessment	Life of difference	Liid Of diffit test	Life of unit test	Life of unit test	
Homework	GCSE past paper exam questions				
	Analysis / Evaluation of investigations				
	Extended answer questions				
Cultural	During the course of the academic year, Ye	ear 9 students will attend the University of C	entral Lancashire. This visit will enable stude	nts to:	
enrichment	Explore Advanced Scientific Concepts: Stu-	dents will have the opportunity to engage wi	ith scientific research and technology, enhan	cing their understanding of key topics	
including Trips, Visits,	covered in their science curriculum.				
Experiences, Extra-	Hands-On Learning: Through interactive workshops and laboratory sessions, students will apply theoretical knowledge in practical settings, fostering a deeper comprehension				
curricular	of scientific principles.				
	Inspiration and Aspiration: Exposure to a university environment and interaction with university faculty and students will inspire Year 9 pupils to consider future educational				
	and career paths in science and related fields.				
	Curriculum Integration: The visit is designed to complement and enrich the current science curriculum, providing real-world context to classroom learning and helping				
	students see the relevance of their studies.				
	This experience aims to ignite a passion for science, encourage critical thinking, and support the academic growth of our students.				

Literacy	Keywords that students may find	Keywords that students may find	Keywords that students may find difficult:	Keywords that students may find
,	difficult:	difficult:	"energy, store, waves, reflection,	difficult:
	Force, contact, non-contact, resultant,	Density, pressure, work,Internal, kinetic,	refraction, longitudinal, transverse,	Current, Potential difference, Resistance,
	friction, scalar, vector, speed, velocity,	potential, energy,	compression, rarefaction, oscillation,	Component, Frequency, Potential
	displacement, distance, resultant,	temperature,Conduction, convection,	wavelength, amplitude, pitch, frequency,	difference, Alternating current, Live wire,
	component, action, reaction	radiation, insulation, thermal, Specific,	period, "SI units, base units, derived	Neutral wire, Earth wire, Power, Current,
	balanced, unbalanced, resultant,	capacity	units, prefix, velocity, Frequency,	Potential difference, Energy transferred,
	stationary, constant velocity,	specific, latent, internal, kinetic,	wavelength, displacement, time period,	Charge, Potential, difference, Power,
	acceleration, deceleration, velocity,	potential, state, temperature, boiling,	"reflection, Refraction, medium,	Cable, Pylon, Transformer, National grid,
	initial velocity, final velocity, force,	melting	wavelength, frequency, speed, reflection,	Potential difference, Electron, Transfer,
	mass, acceleration, initial velocity, final		Refraction, normal, medium, Perspex,	Static, Earthed, Potential difference,
	velocity, velocity, acceleration,		velocity, Frequency, wavelength, ripple	Current
	gradient, slope, area, curve, gradient,		tank, oscillator, ultrasound, Frequency,	
	tangent, vertical, gravity, weight,		vibrate, longitudinal, transverse	
	resultant, acceleration			
Numeracy	Recognise the importance of scientific	Any anomalous values should be	Relate derived quantities with the	Change the subject of an equation
	quantities and understand how they are	examined to try to identify the cause	formulae to calculate those quantities	Interconvert units.
	determined.	and, if a product of a poor measurement,	Draw ray diagrams to represent reflection	
	Change the subject of an equation	ignored.	and refraction"	
	Measure motion, including	Change the subject of an equation		
	determination of speed and rate of			
	change of speed			
	(acceleration/deceleration)			
	Any anomalous values should be			
	examined to try to identify the cause			
	and, if a product of a poor			
	measurement, ignored.			
	Understand that y=mx + c represents a			
	linear relationship			
	Determine the slope and intercept of a			
	linear graph			

	Plot two variables from experimental or			
	other data.			
	What workplace skills does physics develop?			
CIAG	what workplace skills does physics develop:			
	Critical thinking: The ability to scrutinise information you're presented with is important not only for scientists but for lawyers, police, medics, journalists and more.			
	Data analysis: From actuaries and financial advisors to social media specialists and market researchers, data analysis is one of the most sought after skills.			
	Problem solving: Complex problem solving is vital for engineers, researchers, marketers, social workers, designers, and even customer service workers.			
	Attention to detail: From nurses and scientists to accountants and writers, attention to detail is vital to carrying out many roles safely and effectively.			